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Abstract

Coral populations at distributional margins frequently experience suboptimal and variable conditions.
Recurrent El Nifo-Southern Oscillation (ENSO) warming events have caused extensive mortality of
reef-building corals in the Eastern Pacific, and particularly impacted branching pocilloporid corals in
the Galapagos Islands. Pocillopora spp. were previously more common and formed incipient reefs at
several locations in the Archipelago but now occur as scattered colonies. Here, we report an unusually
concentrated aggregation of colonies and evaluate their current genetic diversity. In particular we focus
on a large population of 1614 live Pocillopora colonies found in a volcanic lagoon along the southern
shore of Isabela Island. Forty seven colonies were sampled, primarily using a spatially explicit
sampling design, and all colonies belonged to Pocillopora mitochondrial open reading frame lineage
type 3a. Typing of additional Pocillopora samples (n = 40) from three other islands indicated that this
stand is the only known representative of type 3a in the Galapagos Islands. The Isabela Pocillopora
type 3a colonies harbored Symbiodinium ITS-2 clade Cld. Multilocus genotyping (n = 6
microsatellites) capable of resolving individual clones indicated that this stand is monogenotypic and
thus the high density of colonies is a result of asexual reproduction, likely via fragmentation. Colony
size distribution, while imperfect, suggested the stand regrew from remnant colonies that survived the
1997/98 ENSO event but may postdate the 1982/83 ENSO. The community of Pocillopora colonies at
Isabela is of particular ecological value due to its high density and support of associated organisms
such as fish and benthic invertebrates. The Galapagos Pocillopora corals will continue to provide
insights into the genetic structure and population dynamics of marginal coral populations.

1. Introduction

Many reef building corals occur over large geographic ranges and experience suboptimal and
variable conditions especially at their distribution margins. Hence, marginal populations can provide
unique insights into how corals might respond to climate change (Guinotte et al., 2003;Lirman and
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Manzello, 2009;Hennige et al., 2010;Goodkin et al., 2011). For example, coral communities in the
tropical eastern Pacific (TEP) already experience seasonal cold upwelling, El Nino Southern
Oscillation warm events and reduced aragonite saturation states (Glynn and Colgan, 1992;Fong and
Glynn, 2000).

The Galapagos Islands harbor some of the most vibrant coral communities in the remote Tropical
Eastern Pacific. The center of the archipelago is located 1,000 km offshore from the equatorial South
American coastline and 1,200 km away from the more diverse central Pacific coral communities.
Recent analyses show that the offshore islands are well connected with coral populations along the
Central American coast (Pinzén and LaJeunesse, 2011;Baums et al., 2012). Coral communities in the
Galapagos Islands have experienced large scale bleaching events killing 97-100% of colonies during
the 1982/83 El Nifio-Southern Oscillation (ENSO) event (Glynn, 1988). Recent (primarily 1982/83
and 1997/98) ENSO events left a legacy of depressed coral populations (Glynn, 2003). Whereas
Porites mostly recovered at the northern-most reefs at Darwin Island, Pocillopora density is still
lower than prior to the ENSO events (Glynn et al., 2009). Even more limited recovery of Pocillopora
has occurred in the central and southern Archipelago (Feingold and Glynn, 2014).

Branching corals in the genus Pocillopora form ecologically important reef structures throughout the
tropical eastern Pacific (TEP). Pocillopora is the primary constructor of modern reefs in the Eastern
Pacific (Toth et al., 2012) and provides habitat for associated reef species in this low-diversity coral
system (Glynn, 2004). In the Galapagos Islands, pocilloporid reef structures were known within the
shallow basin of the nearly submerged volcanic cone, Devil’s Crown, Floreana (Glynn and
Wellington, 1983). Also, aggregations of colonies that formed incipient reefs were observed within
semi-enclosed lava pools at Punta Espinosa, Fernandina Island, and well-developed communities
occurred on the islands of San Cristobal, Espafiola and Darwin (Glynn, 1994;2003;Glynn et al.,
2009). However, these structures were lost due to impacts associated with the 1982-83 El Nifo-
Southern Oscillation (ENSO) event and subsequent bio-erosion. In all previously studied research
sites in the archipelago, Pocillopora now occurs only as isolated, scattered colonies. One such
recovering population of scattered Pocillopora is now present at the former reef site in Devil’s
Crown (Feingold and Glynn, 2014), but no live colonies have been noted in the lava rock pools of
Punta Espinosa (Glynn, 2003). Recently, high densities of Pocillopora colonies were observed in the
Concha y Perla Lagoon on the southern coast of Isabela Island (M Schmale, personal
communication). Here, we set out to characterize the genetic diversity of the corals and their
associated Symbiodinium dinoflagellates in this isolated yet highly dense population of Pocillopora
and compare it to other Pocillopora collections from throughout the Galapagos Islands.

Pocillopora species designations were traditionally based on morphological characteristics and 8
or 9 (Hickman, 2008) separate species were identified within the Galapagos Islands. However, within
the genus Pocillopora there is little correlation between morphology and species designation in the
TEP. Only three evolutionary divergent lineages were found based on mitochondrial sequencing
phylogenies and Bayesian clustering analysis (Flot et al., 2008;Pinzén and LaJeunesse, 2011). The
mismatch between genetic data and traditional species designations based on morphology calls into
question previously published species distributions and occurrences of Pocillopora in the TEP and
elsewhere (Combosch and Vollmer, 2011;Pinzén et al., 2013;Schmidt-Roach et al., 2013). A re-
evaluation of Pocillopora species distribution in the TEP is thus necessary especially in light of
recent large-scale disturbances during El Nifio Southern Oscillation (ENSO) events that can cause
local extirpations (Glynn and Deweerdt, 1991;Toth et al., 2012). Here, we employ genetic markers

This is a provisional file, not the final typeset article 2



85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125

Baums et al. Clonal Coral in Galapagos

to determine species and clonal diversity of Pocillopora and their dinoflagellate symbionts at Isabela
Island and throughout the Galdpagos Archipelago.

Size frequency distributions of colonies can provide insights into the recovery process from large
scale disturbance events such as ENSO. However, correlating age and size is complicated in
fragmenting corals such as Pocillopora damicornis. In addition to asexual reproduction via
fragmentation, P. damicornis can produce asexual (ameiotic) (Yeoh and Dai, 2010) as well as sexual
planula larvae leading to populations of mixed asexual and sexual origin, e.g. in the Western
Australia, Panama, Hawaii and the Ryukyu Islands (Adjeroud & Tsuchiya 1999; Richmond 1987;
Stoddart 1984; Whitaker 2006). In contrast, on the Great Barrier Reef and Lord Howe Island reef,
sexual reproduction dominates (Ayre et al. 1997; Ayre & Miller 2004; Benzie et al. 1995; Miller &
Ayre 2004). Sexual reproduction in eastern Pacific pocilloporids occurs via spawning of female and
male gametes into the water column where fertilization occurs (Glynn et al., 1991). Larvae can spend
considerable time in the plankton and are already inoculated with Symbiodinium, their dinoflagellate
symbionts (Richmond, 1987). Pocillopora colonies thus may achieve high population densities via
either sexual or asexual reproduction. Fingerprinting with high-resolution genetic markers allows for
identification of asexually produced colonies (Coffroth and Lasker, 1998;Baums et al., 2006), and in
combination with size frequency distributions of colonies can provide insights into population growth
and recovery processes.

While asexual reproduction allows for population expansion, it does not allow genetic
recombination and, thus, only preserves existing genotypic variation rather than increasing it.
Considerable variability in genotypic evenness and richness on small spatial scales is common in
corals, ranging from minimal clonal replication to reefs dominated by just one genet (Hunter,
1993;Ayre and Hughes, 2000;Miller and Ayre, 2004;Baums et al., 2006;Sherman et al., 2006). Often
asexual reproduction is common at the edges of a species range where sexual partners may be absent
(Baums, 2008;Silvertown, 2008). Asexual reproduction allows genets to persist potentially
indefinitely in the absence of a sexual partner. Locally well adapted coral clones may thus extend the
range of a species (Boulay et al., 2014). Little is known about the contribution of asexual versus
sexual reproduction to population maintenance in Pocillopora corals in the Galapagos. Surveys of
Pocillopora clonal structure in the SW Gulf of California, Mexico revealed that a site with little
physical disturbance were dominated by a large clone whereas more disturbed sites had a higher
occurrence of sexual recruits (Pinzon et al., 2012).

Here, we extend previous efforts (Combosch and Vollmer, 2011;Pinzén and LaJeunesse,
2011;Cunning et al., 2013;Pinzén et al., 2013) to evaluate the genetic diversity and population
structure of Pocillopora in the Eastern Pacific at the geographic margins of this genus’ range. By
applying multilocus genotyping methods we discovered that the high density stand of Pocillopora
corals at Isabela Islands was monogenotypic and aimed to determine whether this clone was a recent
colonizer or a survivor of the large-scale ENSO events in 1982/83 and 1997/98. The community of
Pocillopora colonies at Isabela is of particular ecological value due to its unique presence in the
archipelago and support of associated organisms such as fish and benthic invertebrates. Its proximity
to the population center of Puerto Villamil gives this ecological oasis high touristic appeal and
consequently high economic value.

Iliana Baums
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2. Materials and methods
2.1.  Sample collection and DNA Extraction

2.1.1. Species diversity survey

Pocillopora corals were collected during the Global Reef Expedition onboard the M/V Golden
Shadow to the Galapagos Islands in 2012. Forty colonies (Table 1) were sampled from across the
Galapagos Islands, 6 from Darwin (01.67603° N, 091.99481° W), 24 from Marchena (00.30779° N,
090.40228° W), and 10 from Wolf (01.3856° N, 091.8146° W). Further, three neighboring
aggregations of Pocillopora colonies were sampled on Isabela Island during the same cruise in 2012
(Table 2). They were located in 2-3m depth just east of the tourist area of Concha y Perla lagoon at
00.96294° S, 090.95600° W. The colonies were found in a volcanic lagoon separated by a basalt sill
into a small and large basin. A small sample was clipped from the tips of colonies using bone cutters
and the colonies were photographed. Samples were preserved in ethanol and extracted using the
DNeasy tissue kit (Qiagen) according to the manufacturer’s instruction; however, extraction time in
the lysis buffer was extended to 12 hrs.

2.1.2. Clonal structure in the Concha y Perla lagoon

The three Pocillopora aggregations in the Isabela volcanic lagoon were sampled for clonal structure
following the sampling design of Baums et al. (2006). Briefly, coral branch tips (n = 41) were collected
haphazardly in 5m radius circular plots for a total of 4 plots within the volcanic pools on Isabela Island
(Figure 1). Plots 3 and 4 were located in the same aggregation. Coordinates had a precision of 5° of
arc and of 0.5m along strike. Using a compass and a measuring tape secured to the center point of the
circle, colonies were located by a team of SCUBA divers and mapped. The center of the plot was diver
selected to maximize colony density and therefore sampling feasibility. An additional 6 colonies were
sampled from areas outside of the four plots. A total of 47 branch tips from individual colonies were
collected and preserved in 95% non-denatured ethanol. Samples were extracted for Genomic DNA
using the DNeasy tissue kit (Qiagen) as above.

2.2.  Colony size measurements and percent mortality

The extent of each of the three Pocillopora aggregations was outlined using a handheld GPS while
snorkeling around the perimeter of each. A series of photographic images were obtained over the
complete area of the coral aggregations in the Concha y Perla Lagoon. A Nikon D5100 with a Nikon
10-24 mm lens and Ikelite waterproof housing and a housed Canon G12 camera were used without
flash units. These images were taken as perpendicular as possible to the substrate, rather than strictly
vertically, and care was taken to not overlap or repeat sections of the aggregation. A 1-meter stick
with graduated millimeter increments was used for scale and included in each image. Images were
obtained only in areas with live colonies.

Coral Point Count with Excel extensions (CPCe) was used to measure the circumference of the
colonies contained within each image (Kohler and Gill, 2006). The 2-D projection of each colony
was outlined around the perimeter to calculate planar surface area. These data do not provide
measurements of the actual 3-dimensional tissue area, only the planar (2-D) surface area.
Measurements were made of individual colonies and fragments. For colonies with partial mortality
two measurements were made, the total area and the portion that had died. Adjacent colonies were
discriminated from each other by growth pattern, tissue color, and other distinctive patterns. These
boundaries would be clear in some cases, but in others close consideration of which way the coral
was growing or how they were connected helped determine boundaries. Fragments were

This is a provisional file, not the final typeset article 4



169
170
171
172
173

174
175

176
177
178
179

180

181
182
183
184
185
186
187
188
189
190
191

192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207

208
209

Baums et al. Clonal Coral in Galapagos

distinguished in a similar fashion. A fragment would normally be clearly unattached from the
aggregation and typically much smaller in size and laying on the benthic substrata. Some fragments
showed partial mortality, but this was not discriminated. Instead a single measurement of the total
planar surface area of each fragment was made. Dead areas were determined mostly by pigment
differences from live tissue and the presence of turf algae on the skeleton.

2.3.  Colony age estimation

Area estimates from colony sizes were used with published data on Pocillopora spp. growth rates to
estimate age ranges of the colonies in the pool and to assess if any of the colonies were older than the
1982-83 and 1997-98 El Nifio disturbances. The area of each colony was converted to colony radii
assuming a circular colony shape with the formula

V(Area/m)

Age was estimated as the radius divided by the linear extension rate (cm year™). Linear extension
rates were estimated at 2.24 cm year™' and were derived from measurements for pocilloporids (P.
damicornis and P. elegans) from the Galapagos Islands based on Glynn et al. (1979). These
estimates are lower than the mean linear extension rates from all studies conducted on pocilloporids
in the eastern Pacific [mean = 3.31 cm yr'! + 0.24 SEM, n=11 studies, colony range 2.13 - 7.56; see
table 2 in Manzello (2010)]. Estimation of ages from colony sizes is made difficult by processes that
allow colony fission or fusion (Hughes, 1984). Assuming that fission (fragmentation) is the more
important process, then linear extension likely overestimates colony growth rates from a group of
colonies because it is usually measured as pristine growth (i.e., damaged colonies were excluded,
Glynn et al., 1979) and, thus, underestimates age. Therefore, these age estimates are likely
conservative.

2.4.  Polymerase Chain Reaction (PCR) amplification of the mitochondrial open reading
frame of unknown function

The mitochondrial open reading frame of unknown function (ORF) was amplified with the FATP6.1
and the RORF primers (Flot and Tillier, 2007;Flot et al., 2008). This was done for a subset of
samples; 4 from inside the volcanic pools and all 40 from the islands of Darwin, Wolf, and
Marchena. Amplified products were sequenced on the ABI Hitachi 3730XL genetic analyzer. DNA
sequence chromatograms were reviewed and edited using CodonCode Aligner (CodonCode
Corporation, Centerville, MA). Sequences (GenBank Accession #s: KM610241-KM610280,
Supplementary Table 1) were aligned using ClustalW (Thompson et al., 1994) and neighbor-joining
phylogenetic trees were constructed for the mitochondrial ORF using MEGA (Kumar et al., 2001).
Trees (Figure 2) were generated using the Bootstrap method with 500 replications and the p-distance
model. A representative of each previously-described Pocillopora mitochondrial lineage type (sensu
Pinzon and LaJeunesse (2011) was included in the phylogenetic analysis: four unique haplotypes
(GenBank Accession #s: HQ378758—HQ378761) from the Eastern Pacific and 16 from the Indo-
Pacific (GenBank Accession #s: JX994072- JX994088) were included for the phylogenetic tree.

2.5.  Host microsatellite genotyping

Iliana Baums
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Pocillopora colonies were genotyped using six published microsatellite loci: Pd3-002, Pd3-005, Pd2-
006, Pd2-007, Pd3-008 and Pd3-009 (Starger et al., 2008, Supplement 1). Single-plex reactions
consisted of: 1X Taq polymerase buffer, 2.5 mM magnesium chloride, 0.5 mg/mL Bovine Serum
Albumin (BSA), 0.2 mM of dNTPs, 0.15 uM forward primers, 0.15 uM reverse primers, 0.5U/uLL
Taq polymerase and 1 pL. of DNA (concentrations ranged from 37ng/uL to 240ng/uL). PCR products
were visualized using an ABI3730 (Applied Biosystems) automated DNA sequencer with an internal
size standard (Gene Scan 500-Liz, Applied Biosystems) for accurate sizing. Electropherograms were
analyzed using GeneMapper Software 5.0 (Applied Biosystems). These 6 markers should have
enough power to accurately distinguish between closely related genotypes and those produced by
asexual reproduction [probability of identity = 4.2 * 10°%; (Waits et al., 2001)].

2.6. Denaturing-gradient gel electrophoresis (DGGE) and minicircle analysis

A denaturing-gradient gel electrophoresis (DGGE) was used to analyze the Internal Transcribed
Spacer 2 (ITS2) of nuclear ribosomal RNA genes (LaJeunesse, 2001) for a total of 16 samples, 4
from each plot in the volcanic pools. The PCR was conducted using the forward primer,
“ITSintfor2’’ (LaJeunesse and Trench, 2000), which anneals to a ‘‘Symbiodinium-conserved’’ region
in the middle of the 5.8S ribosomal gene and an ITS-reverse universal primer modified with a 39-bp
GC clamp (LaJeunesse and Trench, 2000). Samples and a ladder containing a mix of C1, D1a, and
B1 were loaded onto an 8% polyacrylamide denaturing gradient gel (45%—-80% urea-formamide
gradient; 100% consists of 7 mol L21 urea and 40% deionized formamide) and separated by
electrophoresis for 15 h at 115 V at a constant temperature of 60°C (LaJeunesse, 2002). The gel was
stained with Sybr Green (Molecular Probes) for 25 min according to the manufacturer’s
specifications and photographed (Figure 3). Comparison of the samples with the ladder indicated
that all samples contained ITS-2 Clade C1. To determine the ITS2-subclade, the noncoding region of
the psbA minicircle, an element in the chloroplast genome that allows high resolution comparisons
among Symbiodinium clades, was sequenced on the Applied Biosystems 3730XL using the primers
miniC-F and miniC-Rev and protocol as specified by Moore et al. (2003).

3. Results
3.1.  Microsatellite analysis reveals only one genet in Isabela’s lava pools

Using 6 microsatellite markers, multi-locus genotypes were determined for 47 colonies from within
the lava pools on Isabella and 40 samples haphazardly collected from Darwin, Marchena and Wolf
Islands (Table 1). All 47 colonies sampled from within the volcanic pools of Isabela Island were of
the same multi locus genotype (Table 1), that is they were all clonemates of the same genet (PD100,
Figure 1). In contrast, the maximum number of clonemates per genet was seven (genet PD107) for
any of the samples collected from Darwin, Marchena and Wolf (Table 1). However, note that
sampling of colonies outside of Isabela occurred over a larger area within each site than sampling
within the lava pools. Greater spatial dispersion of sampled colonies could lead to less genetic
similarity. Within each of the four plots, about 10 % of colonies were genotyped (Table 2).

3.2.  Typing of the host’s mitochondrial open reading frame

Four colonies belonging to genet PD100 from within the lava pools at Isabela Island were typed for
the ORF of unknown function of the host’s mitochondria and found to be of lincage 3a (Figure 2). In
addition to the lava pool samples, 40 of the 42 samples randomly collected throughout the Galapagos
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Islands including Marchena, Wolf and Darwin Islands, successfully amplified for the mitochondrial
lineage and were found to be of type 1a.

3.3. DGGE reveals genet PD100 harbors Symbiodinium ITS2-clade C1d

Internal transcribed spacer 2-DGGE analysis of 16 samples belonging to genet PD100 from the
volcanic pools at Isabela identified Symbiodinium ITS-2 clade C1 as the major symbiont in all
samples (Table 1, Figure 3). No other ITS-2 clades appeared to be present at detectable levels.
Sequencing of the non-coding psbA region of the minicircle of two of the samples from within the
volcanic pools further resolved the identified Symbiodinium ITS-2 type as sublcade C1d (Table 1).

3.4.  Colony size measurements and percent mortality

The three aggregations of Pocillopora colonies in the Concha y Perla lava pools occupied areas of 53
m?, 104 m?, and 291 m?. These aggregations contained a total of 1,614 colonies at a density of 3.6
colonies m? (Table 3). There was a total of 43.5 m? of overall colony area (planar view of live tissue
and dead skeleton), of which 40.3 m? was live coral tissue. The average live tissue area of each
colony was 249.8 cm?. Of the total colony surface area, 92.7% was live tissue. In addition, 263
fragments were observed, indicating that asexual reproduction was occurring

3.5.  Age estimates

An estimate of colony ages based on southern Galapagos Pocillopora spp. growth rate averages of
Glynn et al. [(1979), 2.24 cm year™'] gave a mean colony age of 3.59 years + 2.05 SD. The range was
1.68-3.59 years when using the average growth rate of all 11 ETP studies. The three largest colonies
found within the three aggregations had estimated ages of 14, 15, and 18 years using the Glynn et al.
growth rates. When assuming minimum ages based on the fastest eastern Pacific growth rate from the
Gulf of Papagayo, Costa Rica [4.78 cm year!; (Manzello, 2010)] the three largest colonies were 7, 7,
and 8 years old.

4, Discussion

The Galapagos Islands harbor some of the most vibrant coral communities in the Tropical Eastern
Pacific. Here, we showed that the densest known Pocillopora population in the entire Galapagos
Archipelago was the result of asexual reproduction. We cannot say for certain whether this clone is a
survivor of the 1982/83 ENSO or a later arrival but preliminary age estimates from colony sizes
indicate that the birth of the clone may predate the 1997/98 ENSO event. The three largest colonies
found within the three aggregations had estimated ages of 14, 15, and 18 years, suggesting a
conservative estimated recruitment date of at or just before the 1997-98 El Nifio, whereas the
remaining 1,611 colonies were estimated to be younger than the 1997-98 El Nifio. If only three
colonies survived 1997-98, they were probably remnants from a larger population. This bottleneck
makes it impossible to determine if the clone survived through the 1982-83 EI Nifio in the volcanic
pool or recruited afterwards from more distant locations.

4.1.  Mitochondrial markers define two distinct lineages in the Galapagos archipelago

Iliana Baums
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Pocillopora damicornis is a small branching coral (Figure 1) that forms dense stands in shallow reefs
throughout the Pacific (Goreau, 1959). Morphological identification is a challenge (Combosch et al.,
2008;Souter, 2010) but sequencing of the mitochondrial open reading frame of unknown function
(ORF) allows for designation of distinct lineages (Flot et al., 2008;Souter et al., 2009;Pinz6n and
LaJeunesse, 2011;Pinzoén et al., 2013). Three types (Type 1 — 3) can be distinguished genetically that
appear to be broadcast spawners (Toonen unpubl. data, Pinzon and LaJeunesse, 2011). An additional
four types (4 — 7) appear to be brooders (Pinzon, 2011). Type 3 and 5 are prevalent throughout the
Pacific. Co-occurrence of types might reconcile observations of broadcast spawning and brooding in
colonies identified as Pocillopora damicornis from the same reef (Ward, 1992). Both brooding and
broadcasting types are hermaphroditic (Sier and Olive, 1994;Kruger and Schleyer, 1998).

From inside the volcanic pools at Isabela Island, all samples typed for the mt-ORF were found to
be of lineage 3a (Figure 2) making the Isabela Island genet the only known representative of this
lineage in the Galdpagos Archipelago albeit sampling has not been exhaustive thus far. In Panama,
type 3a is commonly found on reefs in Taboga and Uraba. Pinzon and LaJeunesse (2011) also found
three Pocillopora colonies of type 3b in the Galapagos; 1 on Marchena Island and 2 on Darwin
Island. The remainder of the Pocillopora colonies analyzed by Pinzon and LaJeunesse (n =19, 2011)
and here (n = 38, Table 1) from throughout the Galapagos Island were of type 1a. Lineages 3a and 3b
are only separated by 2 nucleotide changes whereas types 3 and 1 are separated by 14 nucleotide
differences (Pinzén and LaJeunesse, 2011). It is not known if mitochondrial lineage types 3a and 3b
are sexually compatible (i.e. if they represent different species), however type 3b appears to be rare in
the Eastern Pacific (Cunning et al., 2013;Pinzon et al., 2013). Therefore, it is possible that the Isabela
colonies represent a founder or remnant genet.

4.2.  Population dynamics of marginal coral populations

Populations at the edges of a species’ range may only receive sporadic immigrants from more
central populations. The “abundant center’” model makes specific predictions about the demographic
properties and genetic diversity of marginal populations (Antonovics, 1976;Brussard, 1984;Lawton,
1993;Hoffmann and Blows, 1994;Lesica and Allendorf, 1995;Vucetich and Waite, 2003) such as
those in the tropical Eastern Pacific, Japan and the Red Sea. Evidence for the model has been
equivocal in terrestrial and marine systems (reviewed in Sagarin and Gaines, 2002;Eckert et al.,
2008) and we do not directly test its validity here. However, according to the hypothesis, physical
isolation is expected to increase and population size is expected to decrease with increasing distance
from the geographic center of a species’ range (reviewed in Sagarin and Gaines, 2002;Eckert et al.,
2008). If gene flow is correlated with distance, differentiation will be higher among peripheral
populations than central populations ones, and so enhance the probability of inbreeding and the loss
of allelic diversity in marginal populations. Because corals can reproduce locally by asexual means,
reduced gene flow into marginal populations can result in increased clonality (i.e. decreased
genotypic diversity).

Because successful fertilization of gametes is dependent on the distance among adults in broadcast
spawning organisms (Levitan, 1992), marginal populations frequently experience Allee effects
(Eckert, 2002;Baums et al., 2006). In species capable of asexual reproduction and/or self-fertilization,
a rare migrant to a novel environment can successfully establish high local population densities via
fragmentation and local recruitment of selfed larvae even in the absence of other sexual partners
(Eckert, 2002). Such genetically depauperate populations can persist for extended periods of time
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until additional migrants arrive. In the Eastern Pacific, ENSO events change current patterns
sometimes bringing migrants to locations where these species are not normally found (Glynn and
Ault, 2000). Often the species fail to establish due to a lack of mates and other stochastic factors.
Because of the lack of genetic diversity, such populations are vulnerable to disease outbreaks, and
they carry an extinction debt (Honnay and Bossuyt, 2005).

Conversely, marginal conditions combined with reduced gene flow can lead to evolution of
locally adapted genotypes in edge populations (Bell and Gonzalez, 2011). Asymmetrical gene flow
from the center to the margins (driven by the higher densities in the center) can offset the loss of
genetic diversity on the edges (Kirkpatrick and Barton, 1997) and improve fitness (Sexton et al.,
2011) but also swamp locally adapted genotypes (Haldane, 1956;Case and Taper, 2000). Given this
complexity, it remains unknown whether marginal coral populations retain enough functional genetic
diversity to adapt to changing conditions and if those adaptations are shared among populations.

Dispersal of type 3a larvae from other TEP locations to Isabela may occur in the future. This
assessment is supported by limited data on gene flow and connectivity in corals across the TEP. Of
the Pocillopora types, Type 1a is the only one with sufficient samples sizes across the region to allow
for population-level analysis. Structure results, utilizing seven microsatellite markers, suggested
limited partitioning, however Fst and Rst calcuations were not significant, indicating panmixia within
this region which includes the Mexican mainland, Revillagigedo Island, Clipperton Atoll, the
Galapagos and Panama (Pinzon and LaJeunesse, 2011). Porites lobata was similarly well connected
throughout the TEP (Baums et al., 2012). A more comprehensive assessment of coral gene flow
patterns within the TEP across a range of species is needed to determine routes of successful larval
dispersal within the region (Lessios and Baums, in prep).

4.3.  The densest known community of Pocillopora in the Galapagos archipelago formed
asexually

Initial establishment of the Pocillopora community in Concha y Perla lagoon could have been via
sexually or asexually produced (ameiotic) planula larvae that settled on available basalt substrata.
Once established at the study site, the high density of the Isabela Pocillopora aggregations resulted
from asexual reproduction, either via fragmentation or ameiotic larvae (Table 1, Figure 1). While we
cannot say for certain, the data indicate that fragmentation is the dominant reproductive process
generating the high population density. Accordingly, a high number of fragments were observed
within the lava pools (Table 3). Large fragments have a higher chance of survival (Lirman, 2000) so
dispersal is limited but over time genets can extend over 10s of meters (Lasker, 1990;Baums et al.,
2006;Foster et al., 2007;Pinzén et al., 2012).

Asexually produced propagules of Pocillopora are not always the result of fragmentation.
Pocillopora and other coral species release ameiotic planulae as evidenced by having multilocus
genotypes identical to their mothers’ (Stoddart, 1983;Stoddart et al., 1988;Brazeau et al.,
1998;Sherman et al., 2006;Yeoh and Dai, 2010). Ameiotic planulae have, theoretically, the same
dispersal potential as their sexually produced counterparts and thus could be transported further than
fragments (Stoddart, 1983). Several clones of the coral P. damicornis were found distributed over 8
reefs in Hawaii (Stoddart, 1983) and over 800 km in Australia (Whitaker, 2006). However, we did
not find evidence of genet PD100 outside of the larva pools despite searching habitat around Isabela
that previously had been settled by Pocillopora. Had we found PD100 elsewhere, this would have
indicated that the clone produced ameiotic planulae with dispersal potential. The pools are flushed
daily — the tidal flow is quite strong so that larvae should have been able to disperse outside the pool.
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However, larvae may not find suitable habitat easily in the southern Galapagos due to low
temperatures and unfavorable alkalinity (Manzello, 2010). Nevertheless, there is a chance that further
searches may yet reveal evidence of PD100 outside the pools.

4.4.  Symbiodinium

The three mt-DNA lineages of Pocillopora in the Tropical Eastern Pacific identified by Pinzon and
LaJeunesse (2011) associate primarily with one or two Symbiodinium ITS-2 clade types. Pocillopora
mt-DNA Lineage 1a was found to harbor both Symbiodinium C1b-c and S. glynni (clade D) whereas
Pocillopora mt-DNA Lineage type 3 contained only Symbiodinium C1d (LaJeunesse et al.,
2008;Pinzon and LaJeunesse, 2011). Analysis of a larger dataset from the Eastern Pacific
subsequently also discovered Symbiodinium clade D in Pocillopora lineage 3 (Cunning et al., 2013).
Nevertheless, all 16 tested Pocillopora mt-DNA Lineage type 3a samples from within the volcanic
pools at Isabela harbored only Symbiodinium ITS-2 clade C1d.

The uniformity of the host genet-Symbiodinium association in the lava pools at the subclade level
is not surprising (Thornhill et al., 2014). Analysis of Symbiodinium ITS-2 clade C1d from within the
Isabela pools with multiple microsatellite markers may reveal additional subcladal genetic and
thereby, perhaps, functional diversity (Howells et al., 2012). However, in other coral species with
extensive asexual reproduction, colonies usually associate with just one clonal strain of
Symbiodinium (Andras et al., 2011;Andras et al., 2012;Baums et al., 2014) and clonemates of the
same host genet often harbor the same clonal strain of Symbiodinium (Baums et al., 2014).

4.5. Conservation implications

The clone of Pocillopora mtORF type 3a in the lava pools of Concha y Perla is the only known
representative of its type in the Galapagos. While local density is quite high, the low genotypic
diversity may limit the evolutionary potential to selfing and somatic mutations (Van Oppen et al.,
2011). No evidence of selfing was found within the pools as that would have generated distinct albeit
similar genotypes rather than identical ones. We are quite confident in the conclusion that all sampled
colonies were the result of asexual reproduction due to the high number of microsatellite markers
used which results in high power to distinguish between closely related and identical genotypes. We
cannot exclude the possibility that additional sampling may have detected other Pocillopora
genotypes, however the chances seem remote. Moreover, all tested colonies only harbored one ITS-2
clade type, Symbiodinium ITS-2 clade C1d. This apparent absence of genetic diversity makes the
Isabela population vulnerable to infectious disease outbreaks and environmental perturbations. While
other corals are rare in the pool, the pool is heavily visited by snorkelers who generally have travelled
to other areas of the Archipelago and may serve as disease vectors. Physical contact via fins is one
way to spread infectious coral diseases (Williams and Miller, 2005). Rinsing of snorkel gear in a mild
bleach solution is one way to reduce the risk of introducing an infectious disease. The population
should be monitored for arrival of new, genetically diverse recruits.
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7. Figure legends

Figure 1 Pocillopora colonies were sampled in four polar plots within the volcanic pools at Concha
Y Perla, Isabela Island, Galdpagos. All colonies shared the same host multilocus genotype (indicated
by the symbol shape) and harbored Symbiodinium ITS-2 clade C1d (indicated by fill color of the
symbol). The host genet assigned to the Pocillopora mtDNA-ORF of unknown function lineage 3a.
Polar plots: radial axis in m, angular axis in degrees.

Figure 2 Neighbor-joining phylogenetic tree of the Pocillopora mtDNA open reading frame of
unknown function. Each genet (names begin with letters PD) was included once in this dataset. Each
genet name includes its geographic location as the last two letters, with “DA”=Darwin, “MR” =
Marchena, “WO” = Wolf, “IS” = Isabela. The number of times a genet was observed is indicated in
parentheses. Genet PD 119 failed to amplify for this marker. The topology of the tree matches the
one published by Pinzon et al. (2013), however Type 4 clusters with Type 5 here rather than with
Types 3 and 7. Pinzon et al. reported clustering of Type 4 with Type 5 in their STRUCTURE analysis.
Gene Bank accession numbers: KM610241-KM610280.

Figure 3 Internal transcribed spacer 2-DGGE analysis of 16 samples belonging to genet PD100
from the volcanic pools at Isabela identified Symbiodinium ITS-2 sublcade C1d as the major
symbiont in all samples. Second to last lane from the right is the size standard (mixture of clades D1,
B1, and C1).
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Table 1 Pocillopora colonies collected at Darwin, Isabela, Marchena and Wolf Islands, Galapagos
Islands. Given are the number of colonies genotyped (Msat - ramets) and the number of unique
multi-locus genotypes identified at 6 microsatellite loci (Msat — genets). Mitochondrial lineage of the
host was determined via sequencing of the MtDNA open reading frame of unknown function (2
samples failed). The ITS-2 region (16 samples) and the pbs minicircle (4 samples) were sequenced to
identify the Symbiodinium lineage associated with genet PD100.

Island Host Symbiont
Msat MtDNA ITS2 and psb

Genets Ramets 1A 3A  Failed | Cld Cld

Darwin 6 6
PD108 1 1 NA
PD114 1 1 NA
PD116 2 1 NA
PD117 1 1 NA
PD118 1 1 NA

Isabela 47 4
PD100 47 4 16 4

Marchena 24 22 2
Failed 2 1 1 NA
PD101 3 1 NA
PD103 1 1 NA
PD105 1 1 NA
PD107 7 1 NA
PDI111 2 1 NA
PD112 4 1 NA
PD115 3 1 NA
PD119 1 1 NA
Wolf 10 10
PD102 2 1 NA
PD104 2 1 NA
PD106 1 1 NA
PD109 1 1 NA
PD110 2 1 NA
PD113 2 1 NA
Total 20 87
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655  Table 2 Pocillopora colonies in the Concha y Perla lagoon on Isabela Island, Galapagos Islands were
656  sampled (n =41) in four plots of 5 m diameter. All colonies were counted within a 3m diameter
657  circle only. Based on those counts, the proportion of colonies sampled was estimated. An additional 6

658  samples were obtained from outside the four plots. Stdev = standard deviation.
659

Total # of colonies # of colonies # of sampled colonies Prop of colonies
sampled within S5Sm within 3m within 3m sampled within 3m
Plot 1 11 75 8 0.11
Plot 2 10 92 9 0.10
Plot 3 10 153 10 0.07
Plot 4 10 73 7 0.10
Total 41 393 34
Average  10.25 98.25 8.50 0.09
Stdev 0.50 37.48 1.29 0.02
660
661
662
663
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Planar Surface Area (cm?)

Table 3 Pocillopora colony and fragment size measurements

Total Live Dead

Fragment  Colony Area Area

Mean 40.8 269.5 249.8 96.4

Standard Deviation 45.3 325.0 305.3 105.7
Minimum 1.7 1.6 1.6 0.7

Maximum 322.9 4915.9 4448.5 547.1
Count 263 1614 1614 330
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